Neural Lexicon Reader: Reduce Pronunciation Errors in End-to-End TTS by Leveraging External Textual Knowledge

Mutian He[^], Jingzhou Yang, Lei He, Frank K. Soong^{*} [^]The Hong Kong University of Science and Technology, *Microsoft

Introduction

Goal: To build fully end-to-end TTS with minimal resources

• Both minimal data and minimal human efforts, incl. linguistic expertise to build G2P pipeline

Challenge: Fully E2E TTS without preprocessed phoneme inputs often produces pronunciation errors

• Especially for non-phonemic scripts (like Chinese) and irregular orthography (like English)

E2E TTS needs to **know** how to pronounce

- ...but paired data won't cover all the knowledge
- ...and neural networks are inefficient to memorize "hard" knowledge

Lexicons are widely available, but G2P is more than that: Polyphones/heteronyms: Pronunciations dependent on

- contexts
- Require "soft" capability to resolve

Idea: Not to internalize knowledge, but to learn how to extract external knowledge directly given to the model in text forms, e.g. texts from dictionary entries

Example: Pronunciation knowledge; Given the humanreadable raw dictionary entry of a word in the input script, with readings and explanations of each reading, build a model to match the explanation with the contexts and to extract and pronounce the correct reading

Methods

Transformer TTS, with additional Token2Knowledge Attention in each encoder layer *i* after self-attention Similar to Encoder-Decoder Attention in Decoder

- Difference: Each token attends to its own relevant knowledge. For example, a character c_i attends to its own lexicon entry text T_i
- Texts in lexicon entries encoded by the knowledge encoder, e.g. the pretrained language model XLM-R
- Encoded texts v_i for the pronunciation matching the context $h_{i,i}$ will be extracted through attention

Using online lexicons; pronunciation errors evaluated with subjective character error rates (CER) by human listeners, and objective ones by Azure Speech-To-Text

Experiments

Starting from Mandarin dataset with 18K utterances, downsampled to different sizes to simulate low-resource conditions, and evaluated on

- General domain, held-out from the dataset
- Texts with **Rare** characters, only appeared once in whole data, half of them unseen in the 10K split
- A particularly challenging **Heteronyms** test set

- Findings: NLR learns to speak according to the lexicon NLR has significantly fewer errors than the baseline under low-resource conditions
- The lexicon-reading capability can be transferred to another language Cantonese/Japanese to achieve E2E low-resource adaptation on non-phonemic scripts
- Generalizable to characters totally unseen in training, as long as their lexicon entries are given in inference
- NLR is better at resolving heteronyms
- Attention heatmap shows that correct pronunciations have much higher energy cf. incorrect ones
- Pronunciations can be easily manipulated by changing the readings or the explanations of a reading in the lexicon

DATASET SIZE

BASELINE NLR

Table 2: Subjective error rate (%) on different test sets

DATASET SIZE

BASELINE NLR

DATASET SIZE

BASELINE NLR

guage, with different dataset size for each column

CANTONESE	2K	1 K	750	500	250
Baseline NLR	12.32 8.79	$\begin{array}{c} 14.89 \\ 10.04 \end{array}$	$17.64 \\ 10.26$	22.27 10.73	35.08 12.85
JAPANESE	5K	3K	2K	1 K	750
BASELINE NLR	$12.46 \\ 10.50$	15.99 12.48	18.66 13.95	26.85 19.29	33.76 21.81

Table 1: *Objective CER(%) for Mandarin systems*

18K	10K	7.5K	5K
4.65	9.40	18.33	FAIL
4.82	5.86	7.14	13.64

RARE		HETERONYMS			
18K	10K	18K	10K		
8.0	62.0	75.5	80.9		
2.0	4.0	72.6	76.4		
GENERAL					
18K	10K	7.5K	5K		
0.9	5.4	10.9	FAIL		
0.3	1.9	4.1	8.5		

Table 3: *CER*(%) for low-resource adaptation to a different lan-