The Interpreter Understands Your Meaning: End-to-end Spoken Language Understanding Aided by Speech Translation

Mutian He^{1,2}, Philip N. Garner¹ ¹ Idiap Research Institute ² EPFL On Findings of EMNLP'23

Background

- Trend towards difficult & informative LM pretraining task
 - From MLM to whole-word-masking, span MLM, token permutation, text infilling, ...
- Goal: capture more sophisticated/high-level semantics
 - Speech models like Wav2Vec2 are pretrained by low-level acoustic modelling
 - Often further fine-tuned on ASR before used on SLU
 - ... in order to connect with the more information-dense textual space
- PTLMs like CoVe and T5 use supervised pretraining

Motivation & Goal

- A desirable pretraining task for speech models can help ...
 - Understand high-level meanings
 - Capture not only local information
 - Enable multilinguality by language-agnostic representations

• Speech translation!

Methods

- Pretrain on Speech Translation (ST)
 - Common arch: XLS-R (mWav2Vec2) + mBART
 - On, e.g., $En \leftrightarrow Fr ST or/and En+Fr ASR$
- Transfer to downstream tasks
 - Reusing encoder
- Cross-lingual transfer to, e.g. French
 - From English downstream tasks, with zero/few-shots

Knowledge Preservation

- ST knowledge is valuable!
 - Preserve it by joint/multitask training • Computational intensive, require source data
 - Bayesian regularizers: L2-SP & EWC
 - Adaptively limit parameter shift from pretraining during fine-tuning, as used for continual learning

Downstream Tasks

- Intent classification
 - English IC: SLURP benchmark
 - Multilingual IC: MINDS-14 benchmark
 - Low-resource (~600 utterances) per language; use English variants & French
 - Cross-lingual IC: SLURP-Fr & -Es
 - New dataset: Synthetic + Real samples in French & Spanish, based on MASSIVE
- Spoken QA: NMSQA
- Speech summarization: Spoken Gigaword
 - New synthetic dataset

Results

- On SLURP and MINDS-14
 - ST leads to better results cf. ASR pretraining
 - Joint training of both pretraining and target tasks help

Pretraining task	en-AU	en-GB	en-US	fr-FR	Average
ASR	95.7%	97.3%	96.5%	95.2%	96.2%
w/ Joint training	96.3%	98.3%	98.2%	93.7%	96.6%
ST	96.9%	99.0%	98.2%	97.8%	98.0%
w/ Joint training	97.3%	98.7%	99.3%	98.2%	98.3%
ST+ASR	95.4%	98.3%	97.5%	95.6%	96.7%
w/ Joint training	96.3%	98.3%	98.9%	98.5%	98.0%
XLS-R (Lozhkov, 2022)	92.4%	93.2%	93.3%	94.4%	93.3%

Table 3: Test accuracies for models on MINDS-14 multilingual IC, comparing with directly fine-tuning the full XLS-R model. Both ST pretraining and joint training show benefits.

• On cross-lingual IC to SLURP-Fr • ST leads to much better results for transfer to French in 100- or zero-shot, possibly with additional language adversarial training

	Full		100-shot			zero-shot			
Pretraining task	dev	test	real	dev	test	real	dev	test	real
ASR	83.3%	84.0%	79.7%	69.6%	69.0%	71.3%	39.0%	39.8%	39.4%
ST	85.2%	86.1%	84.9%	78.1%	77.0%	79.0%	58.9%	58.9%	56.6%
ST+ASR	85.8%	85.7%	82.4%	78.0%	77.0%	<mark>78.8%</mark>	63.9%	62.6%	59.1%
ST+Adv.	86.4%	84.9%	84.1%	78.3%	78.1%	80.9%	67.0%	67.7%	63.7%
None	75.9%	74.0%	65.4%	57.5%	52.4%	53.5%	15.3%	16.1%	13.6%
Cascaded							66.2%	67.0%	62.2%

Table 4: Accuracies for models on SLURP-Fr cross-lingual IC transferred from SLURP with different amounts of data, accompanied with a cascaded system. Results highlight ST pretraining and language adversarial training.

Similar improvements on spoken QA and summarization • Consistent improvements brought by ST ST+ASR more helpful on summarization

Pretraining t

ASR ST

ST+ASR

DUAL (Lin Cascaded

Table 5: AOS (\uparrow) scores for models on NMSQA. The pretraining tasks prove helpful, particularly ST pretraining, which outperforms the cascaded system.

Model-preserving Bayesian transfer

Takeaway

- With strong multilinguality
- Two new datasets for E2E SLU

ask	dev	test
	54.6%	53.0%
	58.2%	59.4%
	57.8%	58.0%
et al., 2022)	48.5%	49.1%
	58.3%	57.4%

Multi-task joint training already shows better results

• EWC/L2-SP regularizers can also catch up with the joint training results and well preserve ST pretraining knowledge In low resource cases, with appropriate weights

• ST is a powerful pretraining means for E2E SLU

• Preserving the ST knowledge during fine-tuning helps • Bayesian model-preserving methods works